LittleFS Flash File System

From Embedded Workshop
Revision as of 19:37, 10 October 2020 by JMerkle (talk | contribs)
Jump to navigation Jump to search

LittleFS Flash File System

I recently learned about a compact embedded Flash File System known as SpiFFS.
While researching SpiFFS, I soon learned of another compact embedded Flash File System, LittleFS.
LittleFS appears to be even more compact and has additional security in that it creates and maintains a CRC for each file, and verifies the CRC each time the file is read.

  • Compact
  • Power-loss resilience
  • Dynamic wear leveling
  • Bounded RAM/ROM
  • Maintains revision count and CRC (security features)

The Hardware

Let's put this file system onto an STM32 board and check it out.

I'll be using a NUCLEO-F103RB ($10.34), with a Winbond W25Q128FVSG SPI Flash module from Ebay.
https://www.ebay.com/itm/264290947181  If the link doesn't work, just search Ebay for "W25Q128 Module".
I bought two for $8.26 (free shipping).  Download the PDF for the W25Q128FVSG:
https://www.winbond.com/resource-files/w25q128fv%20rev.m%2005132016%20kms.pdf

The W25Q128FVSG uses 2.7V to 3.6V for operation. Here's a diagram for the the chip's pins and signals,
along with the Ebay "W25QXX" module" photo:
]]

Since the NUCLEO-F103RB powers its STM32F103RB processor with 3.3V, this "W25QXX" module"
is compatible with the NUCLEO-F103RB.  (The STM32-F103RB is capable of running from 2.0V to 3.6V.)

Let's look at the signal pins on the NUCLEO-F103RB:
]
On the NUCLEO board, the SPI1_SCK signal is being used to drive the board's Green LED.
So, we will use SPI2 bus and its signal pins.
To connect up the signals for power and the SPI BUS, here's the wiring diagram that was used:
Winbond W25Q128FVSG SPI Flash Module wiring:

Signal     Windbond Pin   W25QXX Pin  NUCLEO-F103RB Signal & Pin
  DI           5              1       PB15 SPI2_MOSI  CN10-26
  CLK          6              2       PB13 SPI2_SCK   CN10-30
  GND          4              3       GND             CN10-20
  DO           2              4       PB14 SPI2_MISO  CN10-28
  CS           1              5       PB12 SPI2_NSS   CN10-16
  VCC          8              6       +3V3             CN7-16

The Software

The SPI and Serial Interface

Let's start by getting enough in place to read the Manufacturer and Device ID from the Winbond part.
Within the STM32CubeMX package for your project:
* Enable SPI2 as "Full-Duplex Master".,  
* Hardware NSS Signal: "Disable"  - We will use GPIO control for this signal.
  - Don't bother trying to use some form of SPI hardware control for this signal pin.
* Frame Format - Motorola, 8-Bits, MSB First
* Clock Prescaler 256,  (140,625KBits/s - this can be changed later)
* Clock Polarity - CPOL: Low (signal is normally low)
* Clock Phase - CPHA: 1 Edge (first rising edge)
* CRC Calculation: Disabled
* NSS Signal Type: Software (GPIO contol)
* Select PB12 Pin, change signal to GPIO_Output, name it "SPI2_NCS" (so we will be using the same names)
* Configure the HCLK for 72MHz (this is rather optional).
    (The Winbond part will function well beyond what this STM32 processor can clock over the SPI bus)
Optional configuration and code that will ease debugging
Select and configure USART2 (The USART2 signals are routed to the NEUCLEO's ST-LINK chip,
    creating a serial connection to your host computer over USB.)
* Mode: Asychronous, Hardware Flow Control (RS232): Disable
* Baud Rate: 115200, 8 bits, No Parity, 1 Stop Bit, Data Direction: Receive and Transmit

Serial Output, Serial Input, and printf() Support

To use the printf() library, pushing the output to the USB serial port, we need define our own fputc().
I put the following in main.c, in the "Private user code" section, #0 as follows:

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
// Defining an fputc() function allows the printf() to work as expected
int fputc(int ch, FILE *f)
{
    uint8_t c = (uint8_t)ch;
    HAL_StatusTypeDef status = HAL_UART_Transmit(&huart2,&c,1,50); // send character to UART2 with 50ms timeout
    if(HAL_OK == status)
        return ch;
    else
        return EOF;
}

// For serial input - read a character from the serial port:

int fgetc(FILE *f)
{
    uint8_t c;
    HAL_StatusTypeDef status = HAL_UART_Receive(&huart2,&c,1,50); // read character from UART2 with 50ms timeout
    if(HAL_OK == status)
        return c;
    else
        return EOF;
}
/* USER CODE END 0 */

Add the following in the "Private includes" section as follows:

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h> // printf()
/* USER CODE END Includes */

Let's create a new C file for our Winbond Block Driver code, "w25q128.c"
And a header file, "w25q128.h"



I Cloned littleFS to my local machine.


Reference Information:

https://uimeter.com/2018-04-12-Try-LittleFS-on-STM32-and-SPI-Flash/
https://github.com/ARMmbed/littlefs
https://github.com/ARMmbed/littlefs/blob/master/README.md